Norwegian Computing Center
Forskningsveien 1B
0Oslo 3

Norway.

Publication no. S-uy
February 1973

SIMULA - its features and prospects
by
G. M. Birtwistle
A lecture delivered at the B.C.S.

Conference on "High level languages",
York, October 1972.

e e

SIMULA - its features and prospects
G. M. Birtwistle, Norwegian Computing Center (NCC)

In this lecture, I shall concentrate upon giving you a
view of SIMULA's structuring properties as time does not
permit me to go into details. A full account is given
in [91. I shall briefly outline the history of SIMULA,
talk at some length on the most important features, and
then look briefly at the prospects for its future.

History

SIMULA [2,8] is based upon ALGOL 60. The authors found
that ALGOL 60's block structure, suitably extended, was

an ideal foundation for mirroring complex situations
involving many components. The first SIMULA [1], now

known as SIMULA I, was a simulation language implemented

on the UNIVAC 1107. Shortly afterwards, UNIVAC took over
the maintenance of the compiler, and Dahl and Nygaard, now
joined by Myhrhaug, began the development of its successor,
the new SIMULA about which I am to talk. It has further
developed the co-routine concept of SIMULA I and extended
it to make the language more general purpose. In addition,
SIMULA contains complete alphanumeric string handling
facilities and well defined I/0. But I have no time to go

into these.

At the moment, SIMULA is available on the CD 3000/6000
series, the UNIVAC 1100 series (EXEC 8) and the IBM 360/370
series (under 0S) - amongst others. Comparisons of SIMULA's

compilation and execution speeds are given in [11,12].

Language development is controlled by the SIMULA STANDARDS
GROUP which decides upon amendments and extensions to the

Common Base [2].

7

A SIMULA application package - CLASS DRAUGHTING

We introduce the main features of SIMULA by outlining an
application package written in SIMULA. This package 1is
fully described, with listings, in Kjeldaas [13].

The package defines the geometrical concepts of points,
lines, figures, etc. and enables the description of
geometrical constructions to be made in a fairly natural
notation. Notice that the way we picture the concepts
of the problem area is very closely mirrored by the
SIMULA descriptions.

A geometrical point is completely specified by two cartesian
co-ordinates (x,y). But it may have other "attributes"
associated with it too - for example, its distance "r" from
the origin, the angle, "theta" it makes with the positive
x-axis. In SIMULA, we describe such a concept in a "class

declaration". The class declaration for points could be:

CLASS POINT(X,Y); REAL X,Y;
BEGIN REAL R, THETA;

REF(POINT) PROCEDURE ROTATED3
BOOLEAN PROCEDURE EQUALSievevas
REAL PROCEDURE DISTANCE ceeed

R := SQRT(X42+Y42);
THETA := ARCTAN2(X,Y);
END #:#: POINT it

where ARCTAN2 is some suitable procedure which returns the
angle in degrees (0+360) made by the point (x,y) to the

positive x-axis.

The declaration has a name (POINT) and parameters; within

the body of the class, further attributes are defined.

ROTATED(P,N) will generate a new point by rotating this
one about the point P through N degrees,

£

~—

EQUALS(P) will check if this point and P represent the same

geometrical point,

DISTANCE(P) returns the distance between this point and
the point P.

ROTATE, EQUALS and DISTANCE may be viewed as operators
working on the local co-ordinates x,y. In addition, R and
THETA are not only locally defined, but initialised by the
actions of the class body. Each time a point is created,

R and THETA are evaluated from the actual parameter values

for x and y. This feature - associating actions with
records - is unique to SIMULA. Here, in a simple case, it
shows how we can reduce the number of parameters. Further

uses will be noted later.

We create and name objects of the class point in the

following way:

REF(POINT) R,S,ORIGO;

ORIGO :- NEW POINT(0,0);
R := NEW POINT(3,4);
S :- R.ROTATED(ORIGO0,90);

This coding creates three variables R,S, ORIGO which will be
used to reference point objects, and then creates represen-
tations of the origin, the point (3,4) and the point which
is the point (3,4) rotated about the origin through 90°.

»

3

R.ROTATED(GRI SO, [A0) R\

OR\G0O

Attributes of a "named" object are accessed by

<object name>.<attribute name>

.
m
.

R POINT

X 3.0 R.X

Y b. R.Y

R 5.0 R.R

THETA .o R.THETA
ROTATED R.ROTATED
EQUALS R.EQUALS
DISTANCE R.DISTANCE

so that R.ROTATED is a call on the procedure ROTATED embedded

in the object currently referenced by R.

When we declare reference variables in SIMULA, they are
given a "qualification", e.g. POINT in REF(POINT).
Reference variables may only reference objects "in" that
class. By using a qualification we may (nearly always)
ensure at compile time that a reference variable is
guaranteed at run time to reference either NONE (no

object at all) or an object whose data structure is known -
i.e. the validity of data accessing can be checked at com-
pile time. The exceptions are due to hierarchical class
definitions which allow a reference variable to reference
objects of subclasses of their qualification. See 19,

Chapter 4.2] for a full explanation.

The second declaration we give describes the concept of

a chord:

CLASS CHORD(P,Q); REF(POINT) P,Q;
BEGIN REAL LENGTH;
IF P==NONE OR Q==NONE OR P.EQUALS(Q)
THEN ERROR("ILLEGAL CHORD DETINITION")
ELSE LENGTH := P.DISTANCE(Q);
END #:#3% CHORD %%

Here we define a chord in terms of its end points. Notice
that whenever a chord object is created, we check that it
is properly defined, i.e. its end points exist and are dis-
tinct. In a more general context then, the class actions
imavy be used to check the validity of the data associated

with a record upon its creation.
The code to represent the chord between R and S is just:

REF(CHORD)C
C :- NEW CHORD(R,S);

refixed levels

Uften when working in problem areas, we want to build up
libraries of inter-related concepts. This can be done in
SIMULA by a so-called "prefix class". In this case, we

might develop:

CLASS DRAUGHTING;

BEGIN CLASS POINT e
CLASS CHORD e
CLASS LINE e ;
CLASS POLYGON e ;
CLASS FIGURE +...vvvn... ceen

REF(LINE) XAXIS, YAXIS;
REF(POINT) OPRIGO;

KAXIS := NEW LINE 5
YAXIS :- NEW LINE s
ORIGO :- NEW POINT(0,0);

ZlD ##3 DRAUGHTING %3 g

[.:% 1s the name of a package containing many handy geo-
totrical building blocks. On calling the class DRAUGHTING, all
pts it contains become available to the programmer for
<1227 use. The DRAUGH'[ING example also shows how the actions

" o2 usec to completely set the environment for the user - in

.15 fase the axes and origin are generated for him.

oIy

'-\r—
<

-~ . E:

clve a small program to draw a simple figure. The

uses the concepts contained in Kjeldaas [13], and

2-tncugh the concepts-of line, polygon and figure have not

en rormalised here, the program is hopefully readable

nough

“RAUGHTING
EEGIN

i

COMMENT by prefixing a user block all the concepts

in DRAUGHTING become available to the user;
REF(POINT) R,S; REF(POLYGON) Py
REF(I'TGURE) T3 INTEGER I

COMMENT generate the points (10,0), (11,0);
R o= NEW POINT(10,0) 5
S :- HNEW POINT(11,0) 5

COMMENT generate the polygon P which contains 6

points - S, and the 600, 1200, ce., 300° rotations

of S about R

P :- NEW POLYGON;

S.INTO(P)

FOR I := 1 STEP 1 UNTIL 5 bo
S.ROTATED(R,BOxI).INTO(P);

COMMENT generate the figure F which will hold

6 polygons - P and the 600, 1200, Ce ey 300°

rotations of P about the origin;

' +-= NEW FIGURE;

P.INTO(F),

FOR I := 1 STEP 1 UNTIL & DO
P.ROTATED(ORIGO,60:1) . INTO(T) ;

COMMENT sketch the figure;
I'.PLOT,

o

|

This program shows how SIMULA can be used to generate and
use2 packages for a prescribed problem area. DRAUGHTING
forms & substantial kernel from which the user can model

a gecretrical construction in geometrical terms and build
42 The final figure in a natural way. One of the authors
oI cIMULA, Nygaard, has become intensely interested in the

use of SIMULA as a tool for system description [9,10].

~.5HTING 1s an example of a prefix class - a collection
oZ interrelated concepts worked out once and for all, vet

2xtendible if need be (see next section). By writing
DRAUGHTING BEGIN

the wnole armoury is brought into use. A prefix class then
forms & conceptual platform which can be used to reduce the
az between the available software, SIMULA, and the problem
a7 hand. The gap can, in general, be further reduced by

cuilding layer upon layer. Each layer is more and more user

O

riented, and further extends the previously defined con-

0
D

pts towards the specific problem area. We start with
crimitive ideas and gradually mould them into more useful
structures. SIMULA is thus oriented towards bottom-up pro-
cramring - writing a broad base which can be of use in several
ireas - and pre-compilation.

"

tefore your very eyes" - examples of prefix layers

ncw use SIMULA's "level" technique to build a list-
“r-z=ssing scheme for a FORTRAN/ALGOL 60 environment.

finclamental problem with list-pracessing is that of

“irzc= (Ze)allocation and it is that problem we tackle

e

e

- <
e

TR AT o

Suppose we put a "mask" on our store which allows for up to
il 1list members. The mask is INTEGER ARRAY NEXT(1:N).

Associated with the array is a pointer FREE which references
Let us assume that the first four

the next available slot.

words of NEXT are in use.

NEXT Vikjji;/ﬁi;;ji;/ o

1 2 3 4

To allocate and deallocate storage, we write two procedures,

DELETE and LOCATE.

PROCEDURE DELETE(K); INTEGER K;
IF K < 1 OR K > N THEN ERROR ELSE

BEGIN
NEXT(K) := FREE; FREE := K;

END ##% DELETE %% 5

A call DELETE(3) would produce:

zZZ =1

1 2 3 ‘T 4 5 N
FREE

To locate the free space and update the pointer FREE, we write

INTEGER PROCEDURE LOCATE;
IF FREE = 0 THEN ERROR ELSE
BEGIN

LOCATE := FREE;
FREE := NEXT (FREE);

END ®¥¥LOCATE®*%¥% |

O

~ollect thece ideas together into a layer as [ollows:

CLASS STORAGE ALLOCATION (N)j; INTEGER Il
BEGIN
INTEGER ARRAY NEXT (1:N);
INTEGER FRELE;
INTEGER PROCEDURE LOCATE ...
PROCEDURE DELETE e ;
FOR FREE := 1 STEP 1 UNTIL N-1 DO
NEXT (FREE) := FREE + 1;
FREE := 1;
END *#%STORAGE ALLOCATION¥

“TORAGE ALLOCATION allows for an arbitrary number of list
members (N > 0). Notice that we correctly initialise the
array elements of NEXT to point to their successors (NEXT(N)
is initialised by default to 0 in SIMULA), and FREE to 1.

llow that the storage (de)allocation problem has been described,
we build a two way list processing package upon the STORAGE
ALLOCATION platform. In two way list processing, each element
has a reference to its predecessor and successor. To remove
the list member referenced by the index L, we must '"blank

out" its own successor and predecessor pointers and update

their references to it by making them jump around L.

tefore
suC sSuC — SUC ——>
<%____ PRED r&——___ﬁ_ PRED PRED
PRED(L) L ' SUC(L)

T —

10.

The coding is:

"R CEDURE OUT(L); INTEGER L;

'
“

1)
=i

——

If L < 1 OR L > N THEN ERROR;

PRED(SUC(L)) := PRED(L);
SUC(PRED(L)) := SUC(L);
SUC(L) := PRED(L) := 0;
DELETE(L) ;

END it QUT #ux g

where DELETE is a call on the procedure defined at the previous
level, STORAGE ALLOCATION.

Similarly, a procedure to place an item into a list preceding

a given item is:

PROCEDURE PRECEDE(L); INTEGER L;
BEGIN INTEGER WHERE;
IF L <1 ORL >N THEN ERROR;
WHERE := LOCATE;

SUC(WHERE) := L,
PRED(WHERE) := PRED(L);
SUC(PRED(L)) := PRED(L) := WHERE;

END ##XPRECEDE ¢,

In a similar way, we can define further procedures INTO
and FOLLOW and complete the description of the second layer.

STORAGE ALLOCATION CLASS TWO WAY LIST;

BEGIN
INTEGER ARRAY SUC,PRED (0:N);
PROCEDURE OUT ;
PROCEDURE PRECEDE;
PROCEDURE INTO;
PROCEDURE FOLLOW;
SUC(0) := PRED(0) := 0,

END

O

N

N—

LT ey

Y

N
o

SR

e T e

ToNTE

11.

diotice that we build the first layer STORAGE ALLOCATION

into this layer by simply prefixing the class declaration

of TWO WAY LIST. TWO WAY LIST parallels SLIP in that we

have implicitly a list HEAD, index 0, whose SUC and PRED
are set by the class actions to initially reference itself.

Then as users who wish to read a list of at most one thousand
members, rank it and count the number of incidences of items,
we simply need to write two procedures and a two line program.
The concepts brought down by TWO WAY LIST do the rest.

TWO WAY LIST (1000)
BEGIN
REAL ARRAY VAL (1:N);
INTEGER ARRAY INCIDENCES (1:N);
PROCEDURE RANKoveeve ceed
PROCEDURE WRITELISTc.00.43

WHILE - LASTITEM DO RANK(INREAL);
WRITELIST,
END

In this example I have tried to show how a user can cut

down the amount of work he has to do by building upon what
We started with SIMULA and built a system
In general, anybody can take
For example,

is already there.
much nearer that of the user.

"any level and use it for his particular problem.
from scratch if we are interested in

we do not have to start
or tree sorts. The storage problem

one-way list processing
has been solved, and we write

STORAGE ALLOCATION CLASS ONE WAY LIST3 , or

STORAGE ALLOCATION CLASS TREE SORT3

Again, if we wish to rank strings using two way lists, we
would use TWO WAY LIST to prefix our program block where
we supply new definitions of RANK and WRITELIST.

U

e

e —

L

‘“u+d now like to turn to the second key concept of

~ - the object. We have already seen examples of
o5 ts (POINTS and CHORDS). Such objects have parameters,
-5c2l data, local operators (procedures) and actions. The

S
-

(]

a is generalised in SIMULA so that these actions may be

bevec in stages, and not all at once when the object is

Q
s

c2rnerated. This is useful in simulation where each entity
i ~he real world may be modelled by a SIMULA object and its
Y22l time active and passive (from the point of view of not
w2Terially affecting the state of the system) phases may be
“-<delled by having the corresponding object in action or

~=2ing frozen.

.22 sirulation features of SIMULA are presented in the form
-~ TwWo system defined prefix layers. CLASS SIMSET serves the
fare Zunction as TWO WAY LIST using references instead of
arrays. Further, since garbage collection is automatic and
-7plicit, such a class as STORAGE ALLOCATION is completely
iirecessary. SIMSET is then used as prefix to CLASS
~LMULATION which contains the notions of simulation time,
srocesses which can be scheduled in an event list, and
écheduling statements. These concepts become alive in

T

5."MULA programs by prefixing a user block with SIMULATION.

.72 user merely has to remember to prefix all his process

=zzlarations by the system prefix PROCESS.

Sii.ilation of a filament capping line

I

y
?

\—l: \

Pickers Cappers Filament chain
conveyor belt

L3

irviZlem description:

si.capped bulbs move on a conveyor belt which moves for 2T
tiTe units, then still for 6T. Opposite each stationary
vtsition is a picker-capper pair which put bulbs on uncapped

silaments.

~apping takes 3T time units, then the "capper" gets a new
5ulb from its partner "picker" if the picker has one available.

- a

~therwise it waits until its partner has one.

* plcKer takes 7-11 time units to retrieve a bulb, orient it,
.2 move to the transfer position. The transfer of a bulb

trom picker to capper is instantaneous.
-lmulation objective:

PR =4

-apper machines. Eventually, which N value is optimal.

n SIMULA, we can program by having a moving filament chain
anc a number of pickers (all alike) and cappers (all alike).

#e work on these three concepts one at a time.

S

—

s

|]
T o s TR T

AL ST oy

TR R e T

=T

~-77IBUTES: Status; i.e.

lt‘G

T “he picker, we can outline

ready with globe, or not ready

S TIONS:
Sl
J/ 1. Fetch a globe
Yes 5 No
\L 2. Is the capper waiting for a globe?
:3 3. Transfer the globe
A} 4. Alert the capper

5. Wait

6. Transfer the globe

l———m(— <

" semi formal description would be

PROCESS CLASS PICKER;
BEGIN REF (CAPPER) PARTNER;
STATUS ...,

HEXTBULB :
HOLD(uniform drawing 7 and 11);
set status to "ready";
IT partner is waiting for a globe
THEN BEGIN transfer the globe; ACTIVATE PARTNER; END

ELSE BEGIN PASSIVATE; transfer the globe; END;

reset status to '"not ready",
GO TO NEXTBULB;
END :2:2:t PICKER 3332 ;

15.

~itilarly, for a capper we get:

~TTRIBUTES: Status: i.e. ready to cap, or waiting for a globe

£ TIONS: >

<
NO e . o
-—TL 1. Are conditions for capping fulfilled:

~
g 2 2. Wait
L
3

3. Cap the bulb

%_NO t\. 4, Is the picker ready with a globe?
{ s . |
s 5. Activate the picker
(\
/ PPOCESS CLASS CAPPER (I); INTEGER I,
EEGIN REF(PICKER) PARTNER;
STATUS ...3

CEXTTRY:
WHILE conditions for capping are not fulfilled
DO PASSIVATE;
HOLD (time to cap bulb);
details of the capping;
IF partner is ready with a globe THEN
ACTIVATE PARTNER;:
GO TO NEXTTRY;
133X CAPPER =%% H

i1
(W]

T R WL e PRIy

16.

nnd for the filament chain:

~TTRIBUTES: OK to cap; a signal to say whether the chain

B S o e b —roerae

is stationary or moving.

~"TIONS:

Lan e e S

1. Turn on the "OK to cap" signal

2. Activate all cappers where bulbs
are required

STy

Wait (total still period - capping
time)

e

4. Turn off the "OK to cap" signal

5. Wait (capping time)

CENTIE T

6. Move to next position

,—6\6— NE— P— N ¢ ve,—s]’

?FOCESS CLASS FILAMENTCHAIN;

‘ BESIN
] NEXTCYCLE:
Turn on the "OK to cap" signal;
FOR each capper DO
IF capping is possible THEN activate the capper;
HOLD (total still period := capping time);
turn off the "OK to cap" signal,
HOLD (capping time);
HOLD (move time);
details of the move;
GO TO NEXTCYCLE;
Lo B PTILAMENTCHAIN 3w H

o

O

RS

~f+er further refinements, We can write

e 1 e S e TS PR -

17

our simulation which

nas the skeleton

SIMULATION
BEGIN

PROCESS CLASS CAPPER ;

PROCESS CLASS PICKER ceeeeed

PROCESS CLASS FILAMENTCHAIN;

generate componentsj;
set them in motionj
HOLD(simulation period);
report;

END

A complete listing is given in Appendix A.

n execution a SIMULA program may be considered as a set of
components, each as general as a fully fledged program, and
ecach a structure taken directly from the class declarations.

4 snapshot at any time would give a picture where each com-

ponent is "at" a certain statement. This statement is refe-

renced by a local sequence control which references how far
Only one com-
The synchro-

down its action sequence we have executed.
sonent is active at a time, the rest are frozen.
nisation between the components is achieved by calls on the

scheduling procedures, e.g. ACTIVATE, PASSIVATE.

The program shows how a fairly complex program may be split
into separate components, and then each one modelled on its
own. The idea of writing components by describing their
actions in English first has proved very useful in practice.
~we NCC SIMULA courses use this idea heavily to teach simu-
lation, and it is possible to now "execute" paper and pencil
~odels, following the instructions in English, and check

ipon the synchronisation of actions before proceeding to the

Ze+tailed coding.

T TS oy £ PP omr e Ty .

TRMOTE YT e

18.

“uture

Yor the future, there are three major extensions which

would be desirable extensions to current SIMULA Systems.

a

1. External classes

All current systems allow for external procedures, but
not external classes. Implementing the latter involves
extra problems, for whereas procedures are self-contained
action clusters which may not be referenced from without,
objects of classes declared in prefix layers certainly
will be referenced and accessed. The internal class
names and their attributes must therefore be known to

a program when it absorbs an external class. However,
the fact that external compilation must come as soon as
funds permit was taken note of when th2 current imple-
mentations were written, and their incorporation should

not prove too difficult.

-. External objects

This means the rolling out of passive objects under
program execution, and rolling them back in when they
are either to be active again or accessed. This would
allow much larger problems to be run. So far as I know
this problem has not been faced squarely by any current
irplementation. Jts implementation will require ad-
Zressing via a look-up table rather than by address in
core, and possibly the serial numbering of all classes

during the lifetime of a compiler.

_B5TG Proposals

“ne DBTG proposals are being examined by groups at NCC
:nd the University of 0Oslo to see how SIMULA can be

"ooked onto data bases. A provisional design proposal
..as already been worked out and was presented at Nord-

TR 1972 [1u41.

AR L

S S S e SN

[Z]

(4]

19.

0-J. Dahl and K. Nygaard:

SIMULA - A Language for Programming and Description
of Discrete Event Systems. Introduction and User's
Manual.

“CC Publ., August 1969.

Ole-Johan Dahl, Bjgrn Myhrhaug and Kristen Nygaard:
SIMULA 67 Common Base Language
HCC Publ. S22, April 1971.

SIMULA for IBM-360: Users Guide
HCC Publ. 523, May 1971.

SIMULA for IBM-360: Programmers Guide
NCC Publ. S24, May 1971.

EXEC 8 UNIVAC SIMULA Users Guide
HCC Publ. S36, August 1971.

EXEC 8 UNIVAC SIMULA Programmers Reference Manual
nCC Publ. S37, May 1972.

¥.. Babcicky and P. Wynn:
Special features of the IBM 360/370 SIMULA System
#CC Publ. Sul, August 1972.

-ontrol Data 6400/6500/6600
-omputer Systems SIMULA References Manual
-ontrol Data Corporation, 1969.

.M. Birtwistle, 0-J. Dahl, B. Myhrhaug and K. Nygaard:
SIMULA BEGIN
Studentlitteratur, Sweden, 1973.

(3
-

lygaard:
System Description in SIMULA - an Introduction
“CC Publ. S35, November 1970.

[12] » NCC System Programming Group
The Structure of the NCC SIMULA compilers and
Bench Mark Comparisons with other Major Languages
(Lecture delivered at NordDATA 72).
NCC Publ. S43, August 1972.

(1] Th. S. Kjeldaas:
CLASS DRAUGHTING - the description of a SIMULA
application package for geometrical constructions.
NCC Publ. S39, June 1972.

(2] H. Hegna:
SIMULA for databaser (in Norwegian) NordDATA 72.
Proceedings of the NordDATA conference, Helsinki 1872.

~crnowledgements

Antti Virjo (Finnish State Computer Centre):
A Comparative Study of Some Discrete Event
Simulation Languages

(Lecture delivered at NordDATA 72, Helsinki).
NCC Publ. Su43, August 18972.

-ne author would like to thank O-J. Dahl and S. Slemmons

€y

-2r very helpful discussions during the preparation of this

irer.

Further thanks are due to the typing pool and

20.

'rinting shop of NCC for their usual speedy and accurate work.

Y

=

e

lee

Birtwistle

foore

2irtwistle

21.

Do you know of any other implementations?

The University of 0Oslo and the Norwegian Defence
Research Establishment have a Cyber 74 and the
latter dre re-implementing SIMULA for the big

CD range in PASCAL. 2/3rds of the system will
thus go on to the ICL 1900's CII in Paris
have implemented SIMULA on the CII 10070 and
IRIS 80. Mr. Wayne Milner has written an inter-
preter for Burroughs. Finally the Swedish Defence
Research Establishment are to begin an implemen-

tation in 1973 for their virtual memory PDP-10.

If you make mistakes in a simulation, like leaving

out a HOLD statement, what happens?

You go on without it - presumably winding up
with unexpected results. While on the subject
of simulation, I would like to point out that
SIMULA is not restricted to the process mode
of description, but can easily be used for the
activity mode too. An activity always has the

skeleton:

PROCESS CLASS ACTIVITY;
IF conditions are met THEN
BEGIN seize entities needed for task;
HOLD (task time);
release entities used in task;
END;

When the synchronisations are tricky, the acti-
vity model will be the easier to write, but less

efficient.

Have you considered an object as data and looked
at DDL's in this way?

Personally, not seriously. But the group men-

tioned above in Future 3 are doing just that.

22.

.Trtendix A

Listing of the program. The problem was given to the author
by Dr. R. Dietvorst of Philips, Holland.

_ENroooooauooooo»o»aooo«»ooo»oo»o»»»4»»oa»»v#oou&ooooo»ooooc#uoo.oco&
ﬂiooooooooooooooooooou»»n»o«o«oouaon#ou#uoo«»uooococooaocnooocwooooa0

» %
PROBLEM FROM PHILIPS IN EINDHOVEN : BULB CAPPING : LA

[1
TYPICAL INPUT: Ll
BASIC TIME UNIT T 0.16 et
NUMBER OF MACHINES @ 6 ol
SIMULATION PERIOD ¢ 3600 "o
A RANDOM SEFD FOR EACH MACHINE ::

00’0600&66060066&¢#¢60#“Q#Q#“Q#Q““###”#QQQQ“0“#060“00”0#00"0*00000'
_.099006000060000“60“#0“0‘00000“006#QQ#Q00#“QQQQQ000000#"....'0’00.0‘

EGER N COMMENT#e#NUMBER OF MACHINESS

BEET :=3073
ET :=SeT}
ININTS

BOOLEAN ARRAY FILAMENTWITHOUTBULB(OSM)3
REF (PICKER) ARRAY P(]1:N)$

REF (CAPPER) ARRAY C(1:N)S

INTEGER NEWF ILAMENTS sUNCAPPED 1}

' REAL SIMPER]IOD?

| BOOLEAN CAPPERSCANNOWCAP S

| PROCESS CLASS FILAMENTCHAING
BEGIN
% INTEGER 13

NEXTCYCLE S

NEWF ILAMENTS t SNEWF ILAMENTS+13$
CAPPERSCANNOWCAP :=TRUE

FOR It=1 STEP] UNTIL N DO

IF FILAMENTWITHOUTBULB(I) THEN ACTIVATE C(I)$
HOLD(THREET) 8

CAPPERSCANNOWCAP : =F AL SE
FOR | t= M STEP =1 UNTIL 1 DO
FILAMENTWITHOUTBULB (1) ¢=F ILAMENTWITHOUTBULB (I=1) }
IF FILAMENTWITHOUTBULB (M) THEN UNCAPPED :=UNCAPPED*]}
MOLD(FIVET) §
GOTO NEXTCYCLES

END®ooF [_AMENT CHAIN#®®}

23.

 lSLASS PICKER?
P INTEGER U3
HUsaININT

INEXTHULB!
FULL$=FALSE s
| HOLO (UNIFORM(To11U))}

FULL!=TRUE ¢
| IF PARTNER.FULL THEN PASSIVATE ELSE
BEGIN
PARTNER.FULL ¢ =TRUE}
ACTIVATE PARTNERS
END3
6OTO NEXTBULB?
Do 8P| CKERB S 6§

CLASS CAPPER}

GIN

INTEGER CAPPED!?
FULL:=TRUE ¢
NEXTTRY?S

} WHILE ~ (CAPPERSCANNOWCAP AND FULL AND FILAMENTWITHOUTBULB(I)) OC

PASSIVATE$

| FILAMENTWITHOUTBULB(I) $=FALSE}
i CAPPED:!=CAPPED+1}

HOLD (THREET) §
IF PARTNERGFULL THEN ACTIVATE PARTNER ELSE FULL:=FALSES
GOTO NEXTTRY?

De®eCAPPER® B3

24,

§sxvpaaxco:=anEALs

LFILAMENTWI THOUTBULB (0) ¢ =TRUE $
(FUR [:=z] STEP] UNTIL N DO

BEGIN
1 C(I)3=NEW CAPPER(
P(I):=NEW PICKER(
ClL) WPLRTNER =P (]
PU1)PARTNERE=C(]
ACTIVATE C(1)3

| ACTIVATE P([)3

| ENDOO e INITIALISATION#®#}

I3
I3
R
)3

{ ACTIVATE NEW FILAMENTCHAINS
| NGLO (SIMPERION) §

TOUTTEXT("CAPPEP CAPPED"™) 3
} OUT IMAGE 3

§FOR [:=1 STEP] UNTIL N DO
| beGIN

! OUTINT(1e6) 3
OUTINT(C(I).CADPEDoa)i

: OUTIMAGE #

§ENDS
| OUTINT (UNCAPPED6) § QUTTEXT('" FILAMENTS GOT THROUGH UNCAPPED") }
N QUTIMAGE S

| OUTINT (NEWFILAMENTS+6) 5 OUTTEXT(" WAS THE TOTAL OF NEW FILAMENTS")}
§ OUTIMAGE }

CAPPER CAPPED
l «05S
Fd 399
3 “ge
N 401
S 398
5 398
6 FILAMENTS GOT THROUGH UNCAPPED
3 WAS THE TOTAL OF NEW FILAMENTS

£z ™M

